
1

WP 4 - RE Specifications
Table of Content
1. Authors .. 2
2. Document Purpose .. 2
3. Artefacts or Useful Links .. 2
4. Introduction .. 3
5. System Architecture ... 4
6. Adoption of a Common Data Model ... 4
7. Mahara Mapping to Common Data Model ... 6

7.1 Mahara Reduced Model ... 6
7.2 Mahara Object Mapping ... 6
7.3 Mahara Activity Mapping ... 12

7.3.1 Verbs ... 13
7.3.2 Mahara event mapping .. 13
7.3.3 Access Activity .. 15

8. Moodle Mapping to Common Data Model ... 16
8.1 Moodle reduced model ... 16
8.2 Moodle Object Mapping .. 16
8.3 Moodle Activity Mapping .. 19

9. Common API For Data Exchange ... 22
10. Recommendation Algorithm ... 24
11. Reference ... 25

2

1. Authors
Zhou Lei
Sandy El Helou
Laurent Opprecht
Jacques Monnard
Denis Gillet
Christophe Salzmann
Omar Benkacem
Patrick Roth
Gérald Collaud
François Jimenez

2. Document Purpose
The Recommender System - RS for short - collects user activities in order to provide a personalized and contextualized
recommendation of actors (people), assets (resources) or activity spaces.

The current implementation of the RS is integrated with Graasp. As such, for the moment, it only monitors Graasp users
and provides recommendation about Graasp objects.

The mid-term purpose is to make of the RE an independent piece of software able to exploit data across different
applications, and as a result return a recommended list available to these various applications. The immediate objective
is to enable monitoring and recommendation for Moodle and Mahara. For this to happen, a common data model and an
API to exchange the data has to be developed between the RS and these platforms. This documents describes the
requirements for achieving this objective.

3. Artefacts or Useful Links
url Title Comments

1 http://opensocial-
resources.googlecode.com/svn/spec/2.0/Social-Data.xml

opensocial-social-data-
specification-2-0

2 http://graaasp.epfl.ch Graasp

3 http://www.opensearch.org/Home OpenSearch OpenSearch is a
collection of simple
formats for the sharing
of search results.

4 http://en.wikipedia.org/wiki/Resource_Description_Framework Resource Description
Framework in
Wikipedia

Resource Description
Framework

3

5 http://www.w3.org/TR/owl-features/ OWL

6 http://fm.ea-tel.eu/fm/fmm.php?pwd=81156c-27728 Meeting 4.11.2011

7 http://dbpedia.org/About DB Pedia

8 http://www.w3.org/RDF/Validator/ RDF W3 Validator

9 http://www.w3.org/TR/rdb2rdf-ucr/ Use Cases and
Requirements for
Mapping Relational
Databases to RDF

10 http://fr.wikipedia.org/wiki/Dublin_Core Dublin Core

11 http://xmlns.com/foaf/spec/ Friend of Friend
specification.

Vocabulary used to
described people.

12 http://protege.stanford.edu/ Protégé. Application to
create ontologies/RDF
Schemas/OWL.

4. Introduction
“Today, more than anytime before, the society is challenged to constantly and actively acquire knowledge in order to stay
up-to-date. Moreover, it is confronted with adverse information overload effects such as stress, anxiety, and reduced
work efficiency at a personal as well as an organizational level. Personalized recommender systems are instrumental in
overcoming the problem of information overload as they help online users find relatively interesting information, services
and products. ”[1]
In PLEs, personalized recommender systems have been proved to be very efficient for reducing user efforts on getting
useful information. While users benefit from recommender systems on PLE platforms, it seems the old way of
recommending resources on a single platform is not sufficient to satisfy user requirements [2]. In order to enable users to
get information without switching between different PLE platforms, we propose a federated recommender system that
exploits data fetched from several PLE platforms and gives user recommendation based on distributed contents,
encouraging by that knowledge sharing and collaboration beyond institutional boundaries.

The aim of this deliverable is to describe the common data model and related API standards to be adopted between
different PLE platforms used in the project and the RS.

The UNIGE elearning infrastructure is primarily made of two LMSs – Moodle and Dokeos – an ePortfolio – Mahara – and
a streaming platform – Mediaserver. Dokeos is the most widely used LMS accounting for about 90% of all users. UNIGE
has migrated Moodle to version 2.0 during summer 2011, and Dokeos to Chamilo (new version of Dokeos) in the near
future. Developments will thus target Moodle 2.0 and Chamilo.

4

With the implementation of this project, users can get recommendation in an easy and convenient way. They can get the
recommended resources on different platforms without switching between these platforms. Also we can encourage the
exchange of useful public resources beyond platform and institution boundaries.

5. System Architecture
As Figure 1 shows, we design a recommendation engine that collects all the information from different systems and
platforms. The information to be collected includes users’ action, the object that would be involved in the action and some
other attributes concerned with the action.
After the recommendation engine collects all the information, it would parse them and make up (for the first time) or
update a graph that contains the relationship between all the users and objects in these systems and platforms,
according to the different action type.

Figure 1 the architecture of the RE

6. Adoption of a Common Data Model
As mentioned before, the recommender system should exploit data belonging to different applications or platforms.
Considering that data models, naming conventions, and formats vary from user to user and network to network”[3], it
becomes crucial to adopt a standard data representation and exchange format across different platforms.

5

Each application has a different object model. This is the case for both Mahara and Moodle but it is more generally the
case for any application. To be able to exchange data with the RE, front-end platforms should communicate using a
common vocabulary. This is achieved by mapping the static object model of each application to a common data model.
The reference model chosen is the 3A interaction model adopted in Graasp and used to communicate with the RE [4].
The model is based on the following few constructs:

● Actors: now refers to users or people. Initially, the concept of actors integrated also the notion of Applications
(and more generally any entity capable of initiating an event). Later, a clear separation between human actors
and applications was adopted.

● Assets: refers to different kinds of resources (files, presentations, videos, wikis) created and shared among
actors.

● (Activity) Spaces: refers to containers where one or more actors share assets and apps

The model has been chosen for its simplicity making it easier to map complex types to a few entities.

Graasp reduced model
Diagram shows the most important object in Graasp as well as their relationships.

Figure 2 Graasp reduced model

6

The following sections describe the detailed mapping from Mahara and Moodle to the 3A interaction model used in
Graasp.

7. Mahara Mapping to Common Data Model

7.1 Mahara Reduced Model
Below is a simplified diagram showing the most important object types in Mahara as well as their relationships.

Figure 3 the Mahara reduced model

7.2 Mahara Object Mapping
All Mahara objects share a set of common properties. Those properties are:

id: Object’s global unique id. This is the application id. It must be globally unique. Required.
pid: Object’s public id. For actors it is the Shibboleth Unique Id. Required for actors.

7

dataset: Dataset uri. I.e. the url of the provider: www.dokeos.unige.ch, www.moodle.unifr.ch, etc. This is somewhat
implied by the query url yet this provides an opportunity to clearly identify the root source - for example to limit the search
to a specific dataset. Required.
name: Name of the object. Optional.
description: Description for the object. Can contain HTML. Optional.
url: Link to access the object. May not be unique to an object as some may be accessed through the same page.
Required.
datastream: Direct url to the data stream. While the url field point to the UI where the user should navigate the stream
field point to the resource’s data. For a file this may be the direct download link. Maybe used to parse content and extract
tags for recommendation. Should not be displayed to the end user through the recommendation interface as content may
be protected. If provided the url should be accessible by the recommendation engine. Optional.
data1: Free text describing the object. Possibly in html format. Maybe used to extract keywords for recommendation.
Should not be displayed by the Re to the end user as content may be protected. Optional.
thumbnail: Link pointing to an thumbnail image. Optional.
created: Created time. Optional. Format ISO 8601, 970-01-01T00:00:00+00:00.
modified: Modified time. Optional. Format ISO 8601, 970-01-01T00:00:00+00:00.
tags: List of tag. Optional.
category: Object’s category. String with forward slashes as separators. I.e. Science/Mathematics/Numerical Analysis.
Optional.
type: The RE object’s type. One of Actor, Asset, Space. Required.
kind: The object application’s type: course, forum, view, file, etc. Useful to change the recommendation display and
allow user to better identify an asset. Application specific. Optional. Note that a possibly better scheme could be to add a
schema and derive the application’s type from one of the AAA type. Yet this would only be possible for some
transmission protocols - rdf, xml.

The default format for dates is ISO 8601, i.e. 970-01-01T00:00:00+00:00.

The following table describes the mapping between Mahara and RE objects.

object in
Mahara

object in
RE

Comments Data

User Actor Users are people registered with
Mahara.
Users can have friends, create views
and collections.
Users can register to groups.
Users can create content/artefacts of
different types: files, folders, blogs,
etc. Yet this content is always private
and can only be shared through views.

id: User id. The application’s id.
pid: User public id. I.e. the Shibboleth Unique Id.
Not the application’s id. Required.
dataset: application uri
name: Display name
description: Short introduction about the person
url: Link to the home/profile page
thumbnail: Link to a thumbnail image
type=actor: RE object’s type
atype=actor

Relationships
Actors: User’s friends

1 Considering to the amount of information transferred to the RE, maybe we should give some keywords instead of
transferring the whole file. The solution is to be decided.

8

Assets: None? Assets belonging to the user.
Spaces: Collections that are shared. Groups the
users participates in. Views that are shared.

View Space Mahara makes a clear distinction
between content - artefacts - and
presentations - views.
Artefacts are used to create content.
Views are used to display content.

A view is a web page made of blocks.
Different type of blocks can be added
to a view. Some of the blocks are used
to display artefacts - files, blogs, etc. -
others are used to directly enter
content - html, url, etc.
Views by default are private to their
owners: a user, a group, an institution
or the Mahara site.
Views can be shared with others by
granting access rights. Different
access rights exist. A view can be
shared with a group, a user, through a
secured url, etc.

id: the view id. Application’s unique id.
dataset: application uri
name: Name of the view
description: View’s description
tags: list of tags
url: Link to access the view
type=space: RE object’s type
atype=view

Relationships
Actors: View owner
Assets: View’s artefacts. I.e. artefacts displayed
in this view.
Spaces: None

View
Comment

Comment View’s comments are messages
posted on views. They can be private
or public. They form a flat list. That is
is it is not possible to reply to a
comment. Comments have a body but
do not have a title.

Files can be attached to comments.

id: the commentid. Application’s unique id.
dataset: application uri
name: Title of the comment. That is the string
“comment” since view’s comments do not have
a title.
description: Comment
url: Link to access the view being commented
type=comment: RE object’s type
atype=comment

Relationships
Actors: Author of the post
Assets: None.
Spaces: None.

Collection Space A collection is an ordered list of views
sharing the same access rights. A
collection has only one owner - a user.
A collection is not displayed directly.
Instead views belonging to the
collection are displayed with an
optional navigation menu.

id: the collection id. Application’s unique id.
dataset: application uri
name: Name of the collection
description: Collection’s description
url: Link to the first view/page in the collection
type=space: RE object’s type
atype=collection

9

Relationships
Actors: Collection’s owner
Assets: None
Spaces: The list of views belonging to the
collection

Group Space A group in Mahara is collaboration
space.
Different types of groups exist. The
group’s type governs how people can
join a group.
A group can have views, forums and
files/folders.
The group’s home page is itself made
of a view. It can be edited using the
same mechanism as any other views.
“Normal” views have a type set to
‘portfolio’.

id: the group id. Application’s unique id.
dataset: application uri
name: Name of the group
description: Group’s description
url: Link to the group homepage.
type=space: RE object’s type
atype=group

Relationships
Actors: People participating in the group. Both
administrators and participants.
Assets: First level files. I.e. files belonging to
the group and having no parent folder.
Spaces: Forums of the group, portfolio’s views
of the group (i.e. excluding the group
homepage), first level folders (i.e. folders
belonging to the group and having no parents).
Items marked as deleted are not displayed.

Group file Asset A group file is an artefact having the
appropriate type (image, file or
archive) and belonging to a group.
A group file can have a folder as a
parent. If the parent is null they are
first level files.
A group file can be accessed through
the group file navigation page.
A group file can be displayed in
different views - both group and user
views.

id: the file artefact id. Application’s unique id.
dataset: application uri
name: Name of the file artefact
description: File artefact’s description
url: Link to the group’s page displaying the file.
I.e. we link to the page displaying the file and not
directly to the downloading link.
type=asset: RE object’s type
atype=file

Relationships
Actors: Owner of the file
Assets: None
Spaces: Space in which it is posted

Group
folder

Space A group folder is an artefact having a
type of ‘folder’ and belonging to a
group.
A group folder can have a folder as a
parent. If the parent is null it is a first
level folder.
A group folder can be accessed
through the group file navigation page.
A group folder can be displayed in

id: the folder artefact id. Application’s unique id.
dataset: application uri
name: Name of the folder artefact
description: Folder artefact’s description
url: Link to the group’s page displaying the
folder’s content.
type=space: RE object’s type
atype=folder

10

other views - both group and user
views.

Relationships
Actors: Owner of the file
Assets: List of files belonging directly to this
folder. I.e. we do not list files showing in children
folders.
Spaces: List of folders belonging directly to this
folder. I.e. we do not listfolders showing in
children folders.

Forum Space A forum in Mahara is a type of
interaction. I.e. it is not an artefact.
A forum is made of forum’s topics.
Each topic is a list of posts.

id: the forum id. Application’s unique id.
dataset: application uri
name: Name of the forum
description: Forum’s description
url: Link to the group’s page displaying the
forum’s content.
type=space: RE object’s type
atype=forum

Relationships
Actors: None
Assets: Active forum topics belonging to this
forum. I.e. we do not list topics marked as
deleted.
Spaces: None.

Forum topic Comment A forum topic is a discussion topic. It
exists as a direct child of the forum
and contains a list of posts/comments
organized in a hierarchical manner.

Posts could be listed as assets of the
topic yet sending them would have the
side effect of making them public.
Bypassing the security features of the
Group. The reason being that posts
are only made of a title and a
description. I.e. the post’s meta-data
are the post’s data. If we share the
post’s description then we share
everything. If we don’t share the
description we share nothing and it is
useless.

One option to overcome this limitation
may be to send posts to the RE for
recommendation processing but not
as object for recommendation. This
could be achieved either by marking

id: the forum topic id. Application’s unique id.
dataset: application uri
name: Title of the forum topic
description: Forum’s topic’s subject.
url: Link to the group’s page displaying the
forum’s topic content. I.e. the discussion.
created: Created time.
type=comment: RE object’s type
atype=topic

Relationships
Actors: Actor who created the topic
Assets: None.
Spaces: None.
Comments: First level comments. That is those
which are direct children of the forum topic
excluding grand children.

11

the object as informational only or by
using a different type of object.

Note that the same remark applies to
comments in general.

Forum post Comment A forum post is a message posted
either as answer to the main topic or
to to another message.

id: the forum post id. Application’s unique id.
dataset: application uri
name: Title of the forum post. Will be empty in
most cases as few people cares to fill-in another
subject.
description: Forum post’s message.
url: Link to the group’s page displaying the
forum’s post content. I.e. the discussion.
created: Created time.
type=comment: RE object’s type
atype=post

Relationships
Actors: Actor who created the topic
Assets: None.
Spaces: None.
Comments: First level comments. That is those
which are direct children of the forum topic
excluding grand children.

Site Space The application can have site level
views and files/folders.
Files/folders are only accessible to
administrators and through json/block
requests. Since they are not
accessible through a standard
interface they are not listed as “assets”
of the site. They will be accessible
though through views when they are
added.
Application level views are listed when
at lest one access right has been
granted. Those having no access right
are not accessible and therefore not
listed.

id: the site id. Application’s unique id.
dataset: application uri
name: Name of the site
description: Description for the site
url: Link to Mahara’s home page.
type=space: RE object’s type
atype=site

Relationships
Actors: Active users. I.e. excluding those
marked as either deleted or suspended.
Assets: None.
Spaces: Groups. Institutions

Institution Space Mahara can host several institutions.
Users belongs to one institution only.
Each institution can have a different
presentation.
This feature is optional.
Each institution can have views and
files/folders.
The remarks made for “Site” above

id: the institution id. Application’s unique id.
dataset: application uri
name: Name of the institution
description: Description of the institution
url: Link to Mahara’s home page.
type=space: RE object’s type
atype=institution

12

applies to institutions as well.

Note that this feature is not used by
the University of Geneva as only one
institution c
 applies.

Relationships
Actors: Active users belonging to the institution.
I.e. excluding those marked as either deleted or
suspended.
Assets: None.
Spaces: Institution’s level views being shared in
some ways and belonging to the institution.

Notification N/A Notifications are messages sent to a
user by different part of the system.

Notifications are sent to a specific user
and can be transmitted by one of the
notification plugins: email, internal, etc.

Different types of notifications exists:
group, institution messages, view
access messages, message from
another user, etc. The user can select
which type of notifications must be
sent by which type of notification
plugin. internal, email, etc.All
notifications - even those sent by
email - can are accessible in the user
account page.

Plugins can add new types of
notifications.

Note: notifications are private. As such
they are not relevant to be served as
recommendations yet they may
contain information useful to make
recommendations.

id: the notification id. Application’s unique id.
dataset: application uri
name: Subject of the message
description: Content of the message
url: Link to Mahara’s home page.
type=?: RE object’s type
atype=notification

Relationships
Actors: To and From if they exists
Assets: None.
Spaces: None.

Blog and
Blog entries

N/A Blog and blog entries are artefact. As
such they are not directly accessible
but must be shared through a view.
See View Artefacts above.

N/A

Tags N/A Two different kind of tags exists: one
for view and another one for artefacts
such as blogs. Artefact’s tags are
themselves artefacts whereas views
tags are a separate list of words.

N/A

7.3 Mahara Activity Mapping

13

Activities are time event providing information about a change to the RE. Activities are short lived. They describe that
something happened at a specific time. The consequences of the activity may last - for example an object’s update - but
the activity itself is instantaneous. Activities can provides information about user’s navigation - that is logging - notify a
change of application’s state - Create Read Update or Delete action - or be triggered by a user - for example evaluation
of a resource.

Activities are closely linked to the RE Object Model as many of them represent a change of the RE model - for example a
new actor was created. Together they form a common vocabulary used to communicate time events by the applications.
As such it is necessary to translate applications’ events to RE activities.

Default activity structure:

provider: Sender, i.e. the url of the application or an agreed upon identifier. Required.
published: Time when the activity occurred. Format ISO 8601, 970-01-01T00:00:00+00:00. Required.
actor: User who performed the activity. Format Object. {id, name, ...} See Mahara User Object Mapping. Required.
verb: Action that was performed. See list of actions below. Required.
object: Object of the verb. Format: object, one of Actor, Asset or Space. Required.
target: Target of the verb. Format: object, one of Actor, Asset or Space. Optional.

7.3.1 Verbs
Verb Description Example Comments

create Object created User created Create reflects the creation of an
object better than add.

update Object updated User updated

delete Object deleted User deleted

add Object added to another object User added to space Add better reflects addition of an
object than “join”. User join group
would be fine but Asset joined
space does not sound so well.

remove Object removed from another object User removed from space

like User like object User like a an asset Not used for the moment

view User viewed object User viewed an asset Using view instead of like for
viewing pages allow us to use
keep like for further use.

7.3.2 Mahara event mapping
Events are hooks in the code that can be intercepted by other part of application. Typically plugins. Events are
predefined by Mahara and cannot be extended.

14

Event in Mahara Activity Verb Activity Data Comments

activateuser N/A Only create, delete and undelete actions are
transmitted for users. Mapping other types of
actions may trigger many “delete” and
“undelete” user actions.

addfriend add actor = logged in user
object = friend user
AAA model
target = user AAA
model

Friends are transmitted as an addition of an
actor to an actor without using a space.

addfriendrequest N/A

blockinstancecommit update actor = logged in user
object = view AAA
model

A block instance commit is transmitted as a
View update activity

creategroup create actor = logged in user
object = group AAA
model

There is no delete group event in Mahara

createuser create actor = logged in user
object = user AAA
model

deactivateuser N/A

deleteartefact N/A User artefacts are essentially private so we
don’t transmit deletion for them. Could be
done though.

deleteartefacts N/A

deleteuser delete actor = logged in user
object = user AAA
model

deleteview delete actor = logged in user
object = view AAA
model

Handle only portfolio’s views.

expireuser N/A

removefriend remove actor = logged in user
object = friend user
AAA model
target = user AAA
model

15

removefriendrequest N/A

saveview created==modified
=> create
created<>
modified=> update

actor = logged in user
object = view

Handle only portfolio’s views.

suspenduser N/A

undeleteuser create actor = logged in user
object = user AAA
model

Unlikely to happen but possible.

unexpireuser N/A

unsuspenduser N/A

updateuser update actor = logged in user
object = user AAA
model

The update action is a bit unclear as some
actions - update password for example - do
not trigger an update action event. On the
other hand changing institution does trigger
event.

userjoinsgroup join actor = logged in user
object = user
target = group

There is no userleavegroup event.

7.3.3 Access Activity
Access activity is generated by users’ navigating to specific pages. Url access can be monitored by plugins and notified
as an activity.

The following table describing which navigation to a url will trigger which activity.

Url Activity
Verb

Activity Data Comments

interaction/forum/view.php view actor = logged in user
object = forum AAA model

interaction/forum/topic.php view actor = logged in user
object = forum topic AAA model

group/view.php
interaction/forum/index.php?
view/groupviews.php
artefact/file/groupfiles.php
group/members.php

view actor = logged in user
object = group AAA model

First level access to an
interaction or group url is
considered access to a
group.

artefact/file/groupfiles.php?folder=xxx view actor = logged in user Files can only be seen

16

object = group folder AAA model through a folder.

user/view.php view actor = logged in user
object = user AAA model

User profile

view/view.php view actor = logged in user
object = view AAA model

View access. Could be
user, group or institution
view.

8. Moodle Mapping to Common Data Model
8.1 Moodle reduced model
Note that the model below includes only a subset of all elements that exist in Moodle (i.e. Moodle provides many different
“activities”, such as discussion forums, assignments, quizzes, chats rooms, etc). In the first phase, only the most
important ones (from a recommendation point of view) will be used by the RE. At a later stage, and depending on
experiences made, additional object types may be added to this model.

Figure 4 Moodle reduced model

8.2 Moodle Object Mapping
Objects structure
id: Object’s global unique id. Required.
pid: Object’s public id. For actors it is the Shibboleth Unique Id. Required for actors.
dataset: Dataset uri. I.e. the url of the provider: www.dokeos.unige.ch, www.moodle.unifr.ch, etc. Required.
name: Name of the object. Required.
description: Description for the object. Can contain HTML. Optional.
url: Link to access the object.
thumbnail: Link pointing to an thumbnail image. Optional.

17

created: Created time. Optional. Format ISO 8601, 970-01-01T00:00:00+00:00.
modified: Modified time. Optional. Format ISO 8601, 970-01-01T00:00:00+00:00.
tags: List of tags. Optional.
type: The RE object’s type. One of Actor, Asset, Space. Required.

Object in Moodle Object in RE Comments Data

User Actor Users are people registered in
Moodle.
Users can be enrolled in
courses (as teacher, student,
etc.).
Depending on their specific
role(s) in a course, users can
create various types of content :
files, urls, folders, etc.

id: User id
pid: User public id. I.e. the Shibboleth Unique
Id. Not the application’s id. Required.
dataset: application uri
name: Full name
description: Short introduction about the
person
url: Link to the profile page
thumbnail: Link to a thumbnail image
tags : a user can add tags to his/her profile
type:actor: RE object’s type

Relationships
Spaces: Courses user is enrolled in.

Course Space A course contains a collection
of “static” content items (pages,
files, folders, urls) and activities
(discussion forums, quizzes,
chat rooms, etc.).

id : course id
dataset: application uri
name : course full name
description : a short summary of the course
url : link to the course home page
type : space

Relationships
Assets : all pages, files, folders, urls in the
course
Spaces : all forums in the course
Actors : users enrolled in course

Page Asset A page is created in a course in
HTML format.

id : page id
dataset: application uri
name : course full name
description : a short description of the page
url : a link to the page
created : creation time
type : asset

File Asset A file is a link to a file stored
either directly in Moodle or in an
external repository

id : resource id
dataset: application uri
name : resource name
description : a short description of the
resource
url : a link to the resource

18

created : creation time
type : asset

Folder Asset A Moodle folder mimics a folder
in a standard file system. It may
contain files and other folders.
In the context of the PLE, it is
considered an atomic asset (i.e.
no sub-assets for contained
files and folders).

id : folder id
dataset: application uri
name : folder name
description : a short description of the folder
url : a link to the folder
created : creation time
type : asset

URL Asset A url is a link to an external web
site

id : URL id
dataset: application uri
name : URL name
description : a short description of the URL
url : a link to the URL
created : creation time
type : asset

Forum Space A forum consists of a list of
discussion topics.

id : forum id
dataset: application uri
name : forum name
description : a short description of the forum
url : a link to the forum
type : space

Relationships
Assets: Forums topics in the forum

Forum topic Comment The starting message of a
discussion topic in a forum.
Answers to the topic (and
answers to answers) are forums
posts.

id : topic id
dataset: application uri
name : topic title
description : comment content
url : a link to the topic
created : creation time
type : comment

Relationships
Actors: Actor who created the topic
Assets: None.
Spaces: None.
Comments: First level comments. That is
those which are direct answers to the forum
topic.

Forum post Comment A forum post is a message
posted either as answer to the

id : post id
dataset: application uri

19

main topic or to to another post.

name : post title
description : comment content
url : a link to the post
created : creation time
type : comment

Relationships
Actors: Actor who created the topic
Assets: None.
Spaces: None.
Comments: posts which are direct answers to
this post.

Blog entry Moodle allows users to create
blog entries, even though there
is no concept of a blog in
Moodle. A blog entry is basically
some text with associated tags.
Blog entries can be referenced
in different locations in Moodle
(e.g. in a course). They are
often searched/accessed
through the associated tags.

id : blog entry id
dataset: application uri
name : title blog entry
description : content of blog entry
url : a link to the blog entry
tags : tags associated with the entry
created : creation time
type : asset

Relationships
Actor : creator of the blog entry
Assets: None
Spaces : None
Comments : None

Other types of objects may be added at a later stage (e.g. other Moodle activities such as wikis, chats, etc.).

8.3 Moodle Activity Mapping
In Moodle, there are two independent sources of data that could be used to feed the RE :
1. Moodle log table

Moodle logs (some) user actions in a table inside its database. This includes for instance a user viewing a resource
or posting a message in a discussion forum. However, many actions are not logged, e.g. all those related to groups
(adding a user to a group). Logging additional actions would necessitate modifications of Moodle core code, which is
not really the best idea (same problem as in Mahara above). Also, Moodle’s documentation does not include a list of
all actions that are logged. To find all these actions, one has to look in Moodle source code for calls to function
“add_to_log” (which is actually called 236 times !).

2. Moodle events
Moodle generates events when something "interesting" happens that is worth alerting the system about.
Programmers can then add their own event handlers for any of these events. But again, the list of predefined events
(i.e. those that can be handled) doesn’t include everything (see
http://docs.moodle.org/dev/Events_API#Events_which_exist). In fact, there is no event for many of the actions that
would be interesting for the RE. For instance, there is no event when a user is viewing a resource. Note also that
events are not logged, so if we wanted to use Moodle events as a source of information for the RE, then we would
have to create our own log of events, which is not a trivial task (unless events are sent in real time to the RE, but this
is not really feasible).

20

In the first stage, given the above, the log table (with the limitations mentioned) seems to be the best source of
information for feeding the RE. If we later find that we need to use other actions for recommendations, we may either add
additional calls to add_to_log in Moodle’s code (to continue using a single source of information) or use events via event
handlers.

Moodle’s log table contains the following fields that can be used for the mapping :
- time : time when action occurred
- userid : id of user performing action
- course : id of course where action happened
- module : type of object, e.g. course, folder, user, resource
- cmid : unique id of object across all objects in all courses (course-module id)
- action : type of action performed (view, add, update)
- url
- info : additional information on action

Default activity structure
(based on ActivityEntry from OpenSocial Data Specification 2.0)

actor: user who performed the activity. Required
object: object of the verb. Format: object, one of Actor, Asset or Space. Required.
provider: sender, i.e. the url of the application or an agreed upon identifier. Required (not repeated in table below, as it is
always the same).
published: time when the activity occurred. Format ISO 8601, 970-01-01T00:00:00+00:00. Required.
target: target of the verb. Format: object, one of Actor, Asset or Space. Optional.
verb : action that the activity describes. Required. Same list of actions as in Mahara (created, update, delete, add,
remove, like, view).

The table below lists the actions from Moodle log that will be made available to the RE (partial list, should be extended
over time).

Action in Moodle Verb ActivityObject Comment

User enrols in a course add actor : user
object : user
published : time of action
target : course
verb : add

User unenrols from a
course

remove actor : user
object : user
published : time of action
target : course
verb : remove

User views a page view actor : user
object : page
published : time of action
verb : view

21

User views a file view actor : user
object :file
published : time of action
verb : view

User views a folder view actor : user
object : folder
published : time of action
verb : view

User views a URL view actor : user
object : URL
published : time of action
verb : view

User creates a forum topic add actor : user
object : forum topic
published : time of action
verb : add
target : forum

User views a forum topic view actor : user
object : forum topic
published : time of action
verb : view

User posts an answer to a
forum topic

add actor : user
object : post
published : time of action
target : forum topic
verb : add

User posts an answer to a
forum post

add actor : user
object : post
published : time of action
target : parent post
verb : add

User views a forum post view actor : user
object : forum post
published : time of action
verb : view

User creates a blog entry add actor : user
object : blog entry
published : time of action
verb : add

User views a blog entry view actor : user
object : blog entry
published : time of action

22

verb : view

9. Common API for Data Exchange
The different PLE platforms will make their data available through a common REST API [5], so that the RS can fetch the
different assets (or resources), spaces, and people and their interactions, and construct/update the common
recommendation graph. With respect to implementation issues, it is still open whether to use RDF to exchange data or
using OpenSocial API, with a json or xml format.
Since we exchange data across different platforms, it’s important to ensure that every actor or asset has a globally
unique identification so that we can recognize and fetch them. For the assets, their id would be the respective application
plus the system id. And for actors, the transmitted id should be a globally user id – Shibboleth[6] id - so that the same
actor in different application is recognized as being the same person.

Examples of the two alternatives are provided below. Once the data is fetched and the recommendation algorithm is run,
the RS will return a recommended list of heterogenous items using REST web services and of course following the same
common format with which data was initially sent. OpenSocial is based on a Google initiative to ease the exchange of
data across different social media applications [2][3][7][8]. It has become popular in many platforms. These social
networks, known as OpenSocial containers, allow OpenSocial Gadgets to access information stored within the social
platform [7]. In the OpenSocial specifications, verbs, objects, object type and etc. are defined. With this standard, we can
transfer the information in different platforms into a unified one. Although OpenSocial is effective in realization, it is not
perfect yet. As we’ve analyzed the business in Mahara, we found that the definition in OpenSocial is not enough. Using
the original OpenSocial can not exactly describe some actions in Mahara. So if we were to adopt it, we might need to
extend it and add some new definitions, which can describe the business better.

Example 1
Get the RDF description of a user.

Request
Get /ac8b4ba95ccc0b817f4858d57dc848af-1

Response
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:aaa="http://ple.unige.ch/re/1#"
 xml:base="http://localhost/mahara_laurent/artefact/graaasp/service/data/"
 >
 <rdf:Description rdf:about="ac8b4ba95ccc0b817f4858d57dc848af-1">
 <aaa:id>admin</aaa:id>
 <aaa:name>Admin User</aaa:name>
 <aaa:url>http://localhost/mahara_laurent/user/view.php?id=1</aaa:url>
 <aaa:type>actor</aaa:type>

23

 <aaa:spaces rdf:resource="cd7135ae6d956a595aeb55dc4fcd10f0-6" />
 <rdf:type rdf:resource="http://ple.unige.ch/re/1#actor"/>
 </rdf:Description>
</rdf:RDF>

Example 2
Get the profile of the given user in json format

Request
/people/{guid}/@self

Response
{"id" : "profileID", "displayName" : "profileName", "attachments" : [{"id" : "personID", "displayName" : "personName",
"aboutMe" : "the introduction of the person", "objectType" : "person"}] }
Rest
url pattern Http Verb Comments
/ Get The site/application’s data
/{id} Get Descriptor for object {id}. Note that the expected id is the application unique

id and not the public id. For example users have two types of ids: the
application id and the global/public id - shibboleth global id, etc. Querying this
interface with a Shibboleth id is not supported.

/{id}?format={html|js
on|xml|rdf}

Get All data from the {id} object in the specified format: json, xml, html, RDF.

Security issues:

As the web services expose potentially private, data access must be limited to the RE only. It is important to note the
access rules are handled at the application level rather than at the RE level especially when it comes to closed items
(items whose metadata is public and exchanged with RS but content is restricted). The proposed scheme is to use
standard account/passwords passed as parameters over HTTPS. Additional security schemes may apply. For example,
IP based security. Since the activities are recorded according to the same standard, all the result would be unified and
could be analyzed by the RE.

24

Figure 5 Data flow of the whole system

10. Recommendation Algorithm
This section summarizes the recommendation algorithm, which will be adopted.

A recommendation graph is constructed taking as nodes all public and closed actors, activity spaces, applications, and
assets, and as assets their inter-relations (e.g. actor x is a member of space y). Then, the 3A ranking algorithm is run on
the graph in order to return a recommended list of relevant items for each target user.

“The 3A ranking algorithm is influenced by the original pagerank algorithm that was developed by Page and Brin for
ranking hypertext documents for Google. The pagerank algorithm is based on the idea that if the owner of page j links to
a page i, he/she is implicitly indicating that page I is important. It follows that the more incoming links page I has, the
more it is considered as globally important because many pages are linking to it. In addition, if authors of “authoritative”
pages link in their turn to other pages, then they also confer importance to the latter. A random jump parameter, defining
the probability of randomly falling on a page, and the damping factor, representing the probability to follow page links
instead of jumping on a random page, are introduced to the algorithm.

Unlike the graph of hypertext documents of the original pagerank algorithm, the social graph of the 3A model involves
heterogeneous nodes related by different types of edges that are not necessarily equally important. In such a
multi-relational graph, when the surfer falls on a node, he or she can choose to follow different types of relations. The
probability to fall on interesting nodes depends upon the probability that the adopted way will lead to them.

25

Finally, according to the target user and the context, all the nodes will be computed and ranked by the importance. And
after the extraction of the items that the target user already have, a list of recommended items will be displayed to the
user”[1].

11. Reference
[1] Sandy El Helou. The 3A Interaction Model and Relation-Based Recommender System: Adopting Social Media

Paradigms in Designing Personal Learning Environments. École polytechnique fédérale de lausanne thése
N°4829(2010)

[2] Wenjun Wu, Thomas Uram, Michael Wilde, Mark Hereld and Michael E. Papka. Accelerating science gateway
development with Web 2.0 and Swift. Proceedings of the 2010 TeraGrid Conference, Article No. 23.

[3] Lynne Grewe and Sushmita Pandey. Quantization of Social Data for Friend Advertisement Recommendation System.
ADVANCES IN PARALLEL DISTRIBUTED COMPUTING, Communications in Computer and Information Science,
2011,Vol 203, Part 1, 596-614.

[4] El Helou, S., Li, N. and Gillet, D. (2010) The 3A interaction model: towards bridging the gap between formal and
informal learning. Proceedings of The Third International Conferences on Advances in Computer-Human
Interactions

[5] RESTful Web services: The basics, http://www.ibm.com/developerworks/webservices/library/ws-restful/
[6] Shibboleth, http://shibboleth.internet2.edu/about.html
[7] Alexandros Dais, Mara Nikolaidou, and Dimosthenis Anagnostopoulos. OpenSocialGov: A Web 2.0 Environment for

Governmental E-Service Delivery. ELECTRONIC GOVERNMENT AND THE INFORMATION SYSTEMS
PERSPECTIVE, Lecture Notes in Computer Science, 2011, Vol. 6866/2011, 173-183

[8] Martin Friedrich, Martin Wolpers, Ruimin Shen, Carsten Ullrich, Ralf Klamma, Dominik Renzel, Anja Richert, Bodo
von der Heiden. Early Results of Experiments with Responsive Open Learning Environments. Journal of Universal
Computer Science, vol. 17, no.3 (2011), 451-471

